To create highly detailed and accurate species suitability maps it was necessary to change from a qualitative description of plant characteristics to an approach that defines tolerances quantitatively. Tolerances to climatic and soil factors were defined (Table 1) and used to map suitability based on summary publications (Moser et al., 1996) and expert knowledge of forage scientists.
Moser, L.E, D.R. Buxton, and M.D. Casler, Eds. 1996. Cool Season Forage Grasses. American Society of Agronomy Monograph 34. 841 pp. ASA, CSSA, and SSSA, Madison, WI.
Suitability patterns for forage species are caused by different factors in different locations. Low winter temperatures limit the northern range of many species, while low precipitation limits the western range of species in the semi-arid west. Low summer temperatures limit the range of species with increasing elevation while high summer temperatures limit the range in the desert southwest and hot and humid southeast. Soil characteristics (pH, drainage, and salinity) also limit the suitability zones of forage species. However, soil amendments (liming and drainage tiles) can alleviate many of these limitations. Thus, NRCS Soil Survey data should be informed and revised by management mitigations.
GIS software allow creation of highly detailed and accurate species suitability mapping based on biophysical characteristics of the region and plant characteristics (Hannaway et al., 2005). Precipitation and maximum and minimum temperature climate grids are now available for annual and monthly periods. Soil type, depth, drainage, pH, salinity, and alkalinity information was obtained from the NRCS STATSGO2 database. Species characteristics were provided by forage experts.
Hannaway, D.B., C. Daly, L. Coop, D. Chapman, and Y. Wei. 2005. GIS-based Forage Species Adaptation Mapping. pp. 319-342. In: S.G. Reynolds and J. Frame (eds). Grasslands: Developments, Opportunities and Perspectives. FAO and Science Pub. Inc., Rome, Italy.
Maps
Nine maps were developed; 1) 30-year long-term July maximum temperature 2) 30-year long-term January minimum temperature, 3) 30-year long-term annual precipitation, 4) soil pH, 5) soil drainage, 6) soil salinity, 7) combined climate factors, 8) combined soil factors, and 9) combined climate and soil factors.
Climate: Tmax, Tmin, Ppt, Combined
Soil: pH, Drainage, Salinity, Combined
All Factors